Source code for tools.sim.bridge.common

import signal
import threading
import functools

from multiprocessing import Process, Queue, Value
from abc import ABC, abstractmethod

from openpilot.common.params import Params
from openpilot.common.numpy_fast import clip
from openpilot.common.realtime import Ratekeeper
from openpilot.selfdrive.test.helpers import set_params_enabled
from openpilot.selfdrive.car.honda.values import CruiseButtons
from openpilot.tools.sim.lib.common import SimulatorState, World
from openpilot.tools.sim.lib.simulated_car import SimulatedCar
from openpilot.tools.sim.lib.simulated_sensors import SimulatedSensors


[docs] def rk_loop(function, hz, exit_event: threading.Event): rk = Ratekeeper(hz, None) while not exit_event.is_set(): function() rk.keep_time()
[docs] class SimulatorBridge(ABC): TICKS_PER_FRAME = 5 def __init__(self, dual_camera, high_quality): set_params_enabled() self.params = Params() self.params.put_bool("ExperimentalLongitudinalEnabled", True) self.rk = Ratekeeper(100, None) self.dual_camera = dual_camera self.high_quality = high_quality self._exit_event = threading.Event() self._threads = [] self._keep_alive = True self.started = Value('i', False) signal.signal(signal.SIGTERM, self._on_shutdown) self._exit = threading.Event() self.simulator_state = SimulatorState() self.world: World | None = None self.past_startup_engaged = False self.startup_button_prev = True def _on_shutdown(self, signal, frame): self.shutdown()
[docs] def shutdown(self): self._keep_alive = False
[docs] def bridge_keep_alive(self, q: Queue, retries: int): try: self._run(q) finally: self.close("bridge terminated")
[docs] def close(self, reason): self.started.value = False self._exit_event.set() if self.world is not None: self.world.close(reason)
[docs] def run(self, queue, retries=-1): bridge_p = Process(name="bridge", target=self.bridge_keep_alive, args=(queue, retries)) bridge_p.start() return bridge_p
[docs] def print_status(self): print( f""" State: Ignition: {self.simulator_state.ignition} Engaged: {self.simulator_state.is_engaged} """)
[docs] @abstractmethod def spawn_world(self) -> World: pass
def _run(self, q: Queue): self.world = self.spawn_world() self.simulated_car = SimulatedCar() self.simulated_sensors = SimulatedSensors(self.dual_camera) self.simulated_car_thread = threading.Thread(target=rk_loop, args=(functools.partial(self.simulated_car.update, self.simulator_state), 100, self._exit_event)) self.simulated_car_thread.start() self.simulated_camera_thread = threading.Thread(target=rk_loop, args=(functools.partial(self.simulated_sensors.send_camera_images, self.world), 20, self._exit_event)) self.simulated_camera_thread.start() # Simulation tends to be slow in the initial steps. This prevents lagging later for _ in range(20): self.world.tick() while self._keep_alive: throttle_out = steer_out = brake_out = 0.0 throttle_op = steer_op = brake_op = 0.0 self.simulator_state.cruise_button = 0 self.simulator_state.left_blinker = False self.simulator_state.right_blinker = False throttle_manual = steer_manual = brake_manual = 0. # Read manual controls if not q.empty(): message = q.get() m = message.split('_') if m[0] == "steer": steer_manual = float(m[1]) elif m[0] == "throttle": throttle_manual = float(m[1]) elif m[0] == "brake": brake_manual = float(m[1]) elif m[0] == "cruise": if m[1] == "down": self.simulator_state.cruise_button = CruiseButtons.DECEL_SET elif m[1] == "up": self.simulator_state.cruise_button = CruiseButtons.RES_ACCEL elif m[1] == "cancel": self.simulator_state.cruise_button = CruiseButtons.CANCEL elif m[1] == "main": self.simulator_state.cruise_button = CruiseButtons.MAIN elif m[0] == "blinker": if m[1] == "left": self.simulator_state.left_blinker = True elif m[1] == "right": self.simulator_state.right_blinker = True elif m[0] == "ignition": self.simulator_state.ignition = not self.simulator_state.ignition elif m[0] == "reset": self.world.reset() elif m[0] == "quit": break self.simulator_state.user_brake = brake_manual self.simulator_state.user_gas = throttle_manual self.simulator_state.user_torque = steer_manual * -10000 steer_manual = steer_manual * -40 # Update openpilot on current sensor state self.simulated_sensors.update(self.simulator_state, self.world) self.simulated_car.sm.update(0) controlsState = self.simulated_car.sm['controlsState'] self.simulator_state.is_engaged = controlsState.active if self.simulator_state.is_engaged: throttle_op = clip(self.simulated_car.sm['carControl'].actuators.accel / 1.6, 0.0, 1.0) brake_op = clip(-self.simulated_car.sm['carControl'].actuators.accel / 4.0, 0.0, 1.0) steer_op = self.simulated_car.sm['carControl'].actuators.steeringAngleDeg self.past_startup_engaged = True elif not self.past_startup_engaged and controlsState.engageable: self.simulator_state.cruise_button = CruiseButtons.DECEL_SET if self.startup_button_prev else CruiseButtons.MAIN # force engagement on startup self.startup_button_prev = not self.startup_button_prev throttle_out = throttle_op if self.simulator_state.is_engaged else throttle_manual brake_out = brake_op if self.simulator_state.is_engaged else brake_manual steer_out = steer_op if self.simulator_state.is_engaged else steer_manual self.world.apply_controls(steer_out, throttle_out, brake_out) self.world.read_state() self.world.read_sensors(self.simulator_state) if self.world.exit_event.is_set(): self.shutdown() if self.rk.frame % self.TICKS_PER_FRAME == 0: self.world.tick() self.world.read_cameras() if self.rk.frame % 25 == 0: self.print_status() self.started.value = True self.rk.keep_time()